A STEREO AND REGIOSPECIFIC ROUTE TO THE SYNTHETIC INTERMEDIATE FOR THE SYNTHESIS OF 9(0)-METHANOPROSTACYCLIN

Masakatsu SHIBASAKI, Katsuhiko ISEKI¹, and Shiro IKEGAMI^{*}
Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-01

A stereo and regiospecific route to the synthetic intermediate, bicyclo[3.3.0]octan-2-one derivative, for the total synthesis of 9(0)-methanoprostacyclin is described starting from 1,3-cyclooctadiene, in which as a key reaction, the conjugate addition of the Gilman reagent to the bicyclo[3.3.0]oct-8-en-2-one skeleton is involved.

In the course of our synthetic studies directed toward 9(0)-methanoprostacyclin $(1)^2$, a highly stable and biologically potent analog of prostacyclin (2), the ketone (11) was demonstrated to be a key intermediate as shown in Scheme. Although previously the ketone (11) was successfully constructed from 1,3-cyclooctadiene in 10 steps, the synthesis suffered from unsatisfactory selectivity at the step of ω -side chain introduction. Because of the obvious need for an efficient route to 11, from which several other carbo-analogs (3 & 4) of prostacyclin should be obtained, the studies described herein were undertaken.

Conjugate addition of the Gilman reagent to the t-butyldimethylsilyl derivative (8) obtained in the usual manner t is a very crucial step, since the attack at the carbonyl function might produce a 1,2-adduct t0.

After the successful observation of the conjugate addition using di-n-butylcopperlithium⁷, reaction with the Gilman reagent derived from 3-(t-butyldimethylsilyloxy)-txans-1-octenyllithium⁸ in ether at -78° was carried out and resulted in the formation of the desired ketone (9) [ir; $v = t^{10} = t$

Conclusively, the present new approach to 11 characterizes that the α -hydroxy group of bicyclo[3.3.0]oct-7-en-2-ol becomes a key functional moiety to introduce both groups of the 11-hydroxy and the ω -side chain stereo and regiospecifically. The synthetic intermediate (11) must be versatile in synthesis of prostacyclin analogs and is readily available by the present synthesis.

References and Notes

- 1) Visiting scientist from Research Laboratory, Mitsubishi Pharmaceutical Co. Ltd., Wakaguri, Ami-cho, Ibaragi 300-03.
- 2) a, K.Kojima and K.Sakai, Tetrahedron Lett., 1978, 3743; b, K.C.Nicolaou, W.S.Sipio, R.L. Magolda, S.Seitz, and W.E.Barnette, J. Chem. Soc., Chem. Commun., 1978, 1067; c, M.Shibasaki, J.Ueda, and S.Ikegami, Tetrahedron Lett., 1979, 433; d, A.Sugie, H.Shimomura, J.Katsube, and H.Yamamoto, 1bid., 1979, 2607.
- 3) The stereochemistry of the *endo-epoxide* (5) and its isomer was confirmed by NMR spectrometry using an Eu shift reagent (Eu(fod)₃).
- 4) With longer reaction time, serious decomposition of the product (7) was observed.
- 5) E.J.Corey and A.Venkateswarlu, J. Am. Chem. Soc., 94, 6160 (1972).
- 6) G.H.Posner, Organic Reactions, 19, 1 (1972). To our best knowledge, the conjugate addition of the Gilman reagent to the bicyclo[3.3.0]oct-8-en-2-one skeleton has never been reported.
- 7) The 1,4-adduct was obtained in good yield, while none of the 1,2-adduct was detected.
- 8) E.J.Corey and D.J.Beames, J. Am. Chem. Soc., 94, 7210 (1972).
- 9) A.Mitra, "The Synthesis of Prostaglandin", Wiley, New York, 1977, p.248.
- 10) Optically active 9(0)-methanoprostacyclin and related compounds would be obtained by the use of the optically active Gilman reagent.

(Received August 20, 1979)